Mathematics Through Problem Solving
- Sreehari VIII B -
The Role of Problem Solving in Teaching Mathematics as a Process
Problem solving is an important component of mathematics education because it is the single vehicle which seems to be able to achieve at school level all three of the values of mathematics listed at the outset of this article: functional, logical and aesthetic. Let us consider how problem solving is a useful medium for each of these. It has already been pointed out that mathematics is an essential discipline because of its practical role to the individual and society. Through a problem-solving approach, this aspect of mathematics can be developed. Presenting a problem and developing the skills needed to solve that problem is more motivational than teaching the skills without a context. Such motivation gives problem solving special value as a vehicle for learning new concepts and skills or the reinforcement of skills already acquired (Stanic and Kilpatrick, 1989, NCTM, 1989). Approaching mathematics through problem solving can create a context which simulates real life and therefore justifies the mathematics rather than treating it as an end in itself. The National Council of Teachers of Mathematics (NCTM, 1980) recommended that problem solving be the focus of mathematics teaching because, they say, it encompasses skills and functions which are an important part of everyday life. Furthermore it can help people to adapt to changes and unexpected problems in their careers and other aspects of their lives. More recently the Council endorsed this recommendation (NCTM, 1989) with the statement that problem solving should underly all aspects of mathematics teaching in order to give students experience of the power of mathematics in the world around them. They see problem solving as a vehicle for students to construct, evaluate and refine their own theories about mathematics and the theories of others. According to Resnick (1987) a problem-solving approach contributes to the practical use of mathematics by helping people to develop the facility to be adaptable when, for instance, technology breaks down. It can thus also help people to transfer into new work environments at this time when most are likely to be faced with several career changes during a working lifetime (NCTM, 1989). Resnick expressed the belief that 'school should focus its efforts on preparing people to be good adaptive learners, so that they can perform effectively when situations are unpredictable and task demands change' (p.18). Cockcroft (1982) also advocated problem solving as a means of developing mathematical thinking as a tool for daily living, saying that problem-solving ability lies 'at the heart of mathematics' (p.73) because it is the means by which mathematics can be applied to a variety of unfamiliar situations. Problem solving is, however, more than a vehicle for teaching and reinforcing mathematical knowledge and helping to meet everyday challenges. It is also a skill which can enhance logical reasoning. Individuals can no longer function optimally in society by just knowing the rules to follow to obtain a correct answer. They also need to be able to decide through a process of logical deduction what algorithm, if any, a situation requires, and sometimes need to be able to develop their own rules in a situation where an algorithm cannot be directly applied. For these reasons problem solving can be developed as a valuable skill in itself, a way of thinking (NCTM, 1989), rather than just as the means to an end of finding the correct answer. Many writers have emphasised the importance of problem solving as a means of developing the logical thinking aspect of mathematics. 'If education fails to contribute to the development of the intelligence, it is obviously incomplete. Yet intelligence is essentially the ability to solve problems: everyday problems, personal problems ... '(Polya, 1980, p.1). Modern definitions of intelligence (Gardner, 1985) talk about practical intelligence which enables 'the individual to resolve genuine problems or difficulties that he or she encounters' (p.60) and also encourages the individual to find or create problems 'thereby laying the groundwork for the acquisition of new knowledge' (p.85). As was pointed out earlier, standard mathematics, with the emphasis on the acquisition of knowledge, does not necessarily cater for these needs. Resnick (1987) described the discrepancies which exist between the algorithmic approaches taught in schools and the 'invented' strategies which most people use in the workforce in order to solve practical problems which do not always fit neatly into a taught algorithm. As she says, most people have developed 'rules of thumb' for calculating, for example, quantities, discounts or the amount of change they should give, and these rarely involve standard algorithms. Training in problem-solving techniques equips people more readily with the ability to adapt to such situations. A further reason why a problem-solving approach is valuable is as an aesthetic form. Problem solving allows the student to experience a range of emotions associated with various stages in the solution process. Mathematicians who successfully solve problems say that the experience of having done so contributes to an appreciation for the 'power and beauty of mathematics' (NCTM, 1989, p.77), the "joy of banging your head against a mathematical wall, and then discovering that there might be ways of either going around or over that wall" (Olkin and Schoenfeld, 1994, p.43). They also speak of the willingness or even desire to engage with a task for a length of time which causes the task to cease being a 'puzzle' and allows it to become a problem. However, although it is this engagement which initially motivates the solver to pursue a problem, it is still necessary for certain techniques to be available for the involvement to continue successfully. Hence more needs to be understood about what these techniques are and how they can best be made available.
No comments:
Post a Comment