John Wallis (Born: 23 Nov 1616 in Ashford, Kent, England Died: 28 Oct 1703
in Oxford, England) whose calculating powers are described:
[Wallis] occupied
himself in finding (mentally) the integral part of the square root of 3 1040; and several hours afterwards wrote down the
result from memory. This fact having attracted notice, two months later he was
challenged to extract the square root of a number of 53 digits; this he
performed mentally, and a month later he dictated the answer that he had not
meantime committed to writing.
Von Neumann (Born: 28 Dec 1903 in
Budapest, Hungary - Died: 8 Feb 1957 in Washington D.C., USA) whose feats of
memory are described by Herman Goldstine:
As far as I could
tell, von Neumann was
able on once reading a book or article to quote it back verbatim; moreover he
could do it years later without hesitation. He could also translate it at no
diminution in speed from its original language into English.
On one occasion I
tested his ability by asking him to tell me how the 'Tale of Two Cities'
started. Whereupon, without pause, he immediately began to recite the first
chapter and continued until asked to stop after about ten or fifteen minutes.
Von Neumann's ability
to do mental arithmetic is the source of a large number of stories which no
doubt have grown the more impressive with the telling. It is hard to decide
between fact and fiction. However, it is clear that multiplying two eight digit
numbers in his head was a task that he could accomplish with little effort.
Again it would appear that von Neumann's 'almost perfect' memory played a large
part in his ability to calculate.
Only one mathematician
has ever described in detail how he was able to perform incredible feats of
memory and calculating. This is A C Aitken, (Born: 1 April 1895 in Dunedin, New Zealand Died: 3 Nov 1967 in
Edinburgh, Scotland) .
He could instantly
give the product of two numbers each of four digits but hesitated if both
numbers exceeded 10,000.
Among questions asked
him at this time were to raise 8
to the 16th power; in a
few seconds he gave the answer 281,474,976,710,656 which is correct. ...
he worked less quickly when asked to raise numbers of two digits like 37
or 59 to high powers....
Asked for the
factors of 247,483 he replied 941
and 263; asked for the factors of 171,395 he gave 5, 7, 59
and 83, asked for the factors of 36,083 he said there were none.
He, however, found it
difficult to answer questions about numbers higher than 1,000,000.
Another mathematician George Parker Bidder
was born in 1806 at Moreton Hampstead in Devonshire, England.
He was not one to lose his skills when educated and wrote an Number Base Systems.
No comments:
Post a Comment